Brain Science: The Dog Ate My Striatum…

Scientists have shown a connection between the size of three particular brain regions and the ability to adapt quickly and perform well on a new set of abstract mental tasks – in this case, a video game (the article makes too much, I think, of the fact that the study used a video game as its measure of learning.)

Brain Regions Linked to Learning

Brain Regions Linked to Learning

The team set out to discover whether physical characteristics in the brain played a role in the variability in learning rates.

“Our animal work has shown that the striatum is a kind of learning machine – it becomes active during habit formation and skill acquisition,” one of the study’s co-principal investigators, Ann Graybiel of the Massachusetts Institute of Technology, said in the news release. “So it made a lot of sense to explore whether the striatum might also be related to the ability to learn in humans.”

Thirty-nine subjects, ten men, twenty-nine women, ages 18 to 28, were recruited at the University of Illinois; none had played video games for more than three hours a week in the past two years.

The video game Space Fortress can be manipulated to test various aspects of cognition.

After brain mapping and measuring with an MRI, each subject played a specially created video game for 20 hours. The researchers instructed some players to focus on scoring as many points as possible, and others to shift their priorities between several goals.

Subjects with a more voluminous nucleus accumbens did significantly better in the early stages of training. Those with larger caudate nucleus and putamen, performed better when shifting strategies.

“These are people who had healthy brains,” Erickson said. “These aren’t learning-disabled people. But we were still able to distinguish essentially who would be more affected by the training in this video game.”

The nucleus accumbens has been previously linked to the brain’s emotional response to reward and punishment; more volume here indicates a greater capacity for absorbing the frustrations of the early learning process.

“The putamen and the caudate have been implicated in learning procedures, learning new skills, and those nuclei predicted learning throughout the 20-hour period,” said the University of Illinois’ Arthur Kramer, another co-principal investigator.

“The fact that we could explain more than 20 percent of the variance in learning rates by measuring the volume of only two or three brain regions is actually quite impressive,” Erickson said. “There must be several other brain regions contributing to performance in learning. These other regions are things that other studies will have to track down.”

Read the full article here: Big Brain For Video Games

Tags: , ,

Leave a Reply

You must be logged in to post a comment.